viernes, 28 de mayo de 2010

CALCULO INTEGRAL

El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la matemática en general y se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.

Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos. uno de los mayores cientificos fue khriz chackon quien dio la formula completa Sus principales objetivos a estudiar son:

* área de una región plana
* cambio de variable
* integral indefinida
* integral definida
* integrales impropias
* integrales trigonométricas, logarítmicas y exponenciales
* métodos de integración
* teorema fundamental del cálculo
* volumen de un sólido de revolución
En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.

Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.

Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración. Como consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:

\int{f} ó \int{f(x)dx}

El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo integral, y proporcionan un método sencillo de calcular integrales definidas de
Ejemplo
La integral indefinida o primitiva de la función f(x) = cos(x) en \Re, es la función F(x) = sen(x) ya que sen′(x) = cos(x). Dado que la derivada de una constante es cero, tendremos que cos(x) tendrá un número infinito de primitivas tales como sen(x), sen(x) + 5, sen(x) - 100, etc. Es más, cualquier primitiva de la función f(x) = cos(x) será de la forma sen(x) + C donde C es una constante.
Constante de integración [editar]
Artículo principal: Constante de integración

La derivada de cualquier función constante es cero. Una vez que se ha encontrado una primitiva F, si se le suma o resta una constante C, se obtiene otra primitiva. Esto ocurre porque (F + C) ' = F ' + C ' = F ' + 0 = F '. La constante es una manera de expresar que cada función tiene un número infinito de primitivas diferentes.

Para interpretar el significado de la constante de integración se puede observar el hecho de que la función f (x) sea la derivada de otra función F (x) quiere decir que para cada valor de x, f (x) le asigna la pendiente de F (x). Si se dibuja en cada punto (x, y) del plano cartesiano un pequeño segmento con pendiente f (x), se obtiene un campo vectorial como el que se representa en la figura de la derecha. Entonces el problema de encontrar una función F (x) tal que su derivada sea la función f (x) se convierte en el problema de encontrar una función de la gráfica de la cual, en todos los puntos sea tangente a los vectores del campo. En la figura de la derecha se observa como al variar la constante de integración se obtienen diversas funciones que cumplen esta condición y son traslaciones verticales unas de otras.
Integrales inmediatas [editar]
Artículo principal: Anexo:Integrales

Para encontrar una primitiva de una función dada, basta con descomponerla (escribirla bajo forma de una combinación lineal) en funciones elementales cuyas primitivas son conocidas o se pueden obtener leyendo al revés una tabla de derivadas, y luego aplicar la linealidad de la integral:

\int_a^b (k \cdot \mbox{f}(x) + l \cdot \mbox{g}(x)) dx = k \cdot \int_a^b \mbox{f}(x) dx + l \cdot \int_a^b \mbox{g}(x) dx \,\!

Aquí están las principales funciones primitivas:
Función F \,\!: primitiva de f \,\! función f \,\!: derivada de F \,\!
f\left(x\right) = \frac {x^{n+1}}{n+1} + k \,\! \begin{matrix}f'\left(x\right) = x^n & & \mathrm{ , para} & n \neq -1 \end{matrix} \,\!
f\left(x\right) = e^x + k \,\! f'\left(x\right) = e^x \,\!
f\left(x\right) = \ln\left(x\right) + k \,\! f'\left(x\right) = \frac{1}{x} \,\!
f\left(x\right) = \frac {x^{1-n}}{1-n} + k \,\! \begin{matrix}f'\left(x\right) = \frac {1}{x^n} & & \mathrm{ , para} & n \neq 1 \end{matrix} \,\!
f\left(x\right) = -\cos\left(x\right) + k \,\! f'\left(x\right) = \sin\left(x\right) \,\!
f\left(x\right) = \sin\left(x\right) + k \,\! f'\left(x\right) = \cos\left(x\right) \,\!
f\left(x\right) = \tan\left(x\right) + k \,\! f'\left(x\right) = \frac {1}{\cos^2\left (x\right)} \,\!
\begin{matrix}f\left(x\right) = \frac {a^x}{\ln(a)} + k & & \mathrm{, si} & a > 0 \end{matrix} \,\! f'\left(x\right) = a^x \,\!
f\left(x\right) = \frac {2}{3} \sqrt{x}^3 + k \,\! f'\left(x\right) = \sqrt {x} \,\!
f\left(x\right) = ax + k \,\! f'\left(x\right) = a \,\!
f\left(x\right) = \arctan(x) + k \,\! f'\left(x\right) = \frac{1}{1+x^2} \,\!

Por ejemplo, busquemos una primitiva de x → x(2-3x). Como no se conocen primitivas de un producto, desarrollemos la expresión: x(2-3x)= 2x - 3x2. 2x es la derivada de x2, 3x2 es la de x3, por lo tanto 2x - 3x2 tiene como primitiva x2 - x3 + k. Si además se pide que la primitiva verifique una condición F(x0) = y0 (que recibe el nombre de condición inicial cuando se trata de un problema de física), entonces la constante k es unívocamente determinada. En el ejemplo, si se impone F(2) = 3, entonces forzosamente k = 7.
Métodos de integración [editar]
Artículo principal: Métodos de integración

Tenemos varios métodos a nuestra disposición:

* La linealidad de la integración nos permite descomponer integrales complicadas en otras más sencillas.
* Integración por sustitución, a menudo combinada con identidades trigonométricas o el logaritmo neperiano.
* Integración por partes para integrar productos de funciones.
* El método de la regla de la cadena inversa, un caso especial de la integración por sustitución.
* El método de fracciones parciales nos permite integrar todas las funciones racionales (fracciones de dos polinomios).
* El algoritmo de Risch.
* Integrales también pueden calcularse utilizando tablas de integrales.

No hay comentarios:

Publicar un comentario